Refine Your Search

Topic

Search Results

Standard

Environmental Control Systems for Rotorcraft

2020-05-12
CURRENT
ARP292D
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for rotorcraft environmental control systems (ECS). The rotorcraft ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military rotorcraft where an ECS is specified; however, certain requirements peculiar to military applications—such as nuclear, biological, and chemical (NBC) protection—are not covered.
Standard

Environmental Control Systems for Helicopters

2014-12-05
HISTORICAL
ARP292C
This ARP discusses design philosophy, system and equipment requirements, environmental conditions, and design considerations for helicopter environmental control systems (ECS). The helicopter ECS comprises that arrangement of equipment, controls, and indicators which supply and distribute dehumidified conditioned air for ventilation, cooling and heating of the occupied compartments, and cooling of the avionics. The principal features of the system are: a A controlled fresh air supply b A means for cooling (air or vapor cycle units and heat exchangers) c A means for removing excess moisture from the air supply d A means for heating e A temperature control system f A conditioned air distribution system The ARP is applicable to both civil and military helicopters where an ECS is specified; however, certain requirements peculiar to military applications, such as nuclear, biological and chemical (NBC) protection, are not covered.
Standard

Environmental Control for Civil Supersonic Transport

2011-08-10
CURRENT
AIR746C
This document supplements ARP85, to extend its use in the design of ECS for supersonic transports. The ECS provides an environment controlled within specified operational limits of comfort and safety, for humans, animals, and equipment. These limits include pressure, temperature, humidity, conditioned air velocity, ventilation rate, thermal radiation, wall temperature, audible noise, vibration, and composition (ozone, contaminants, etc.) of the environment. The ECS is comprised of equipment, controls, and indicators that supply and distribute conditioned air to the occupied compartments. This system is defined within the ATA 100 specification, Chapter 21. It interfaces with the pneumatic system (Chapter 36 of ATA 100), at the inlet of the air conditioning system shutoff valves.
Standard

Environmental Control for Civil Supersonic Transport

2006-06-28
HISTORICAL
AIR746B
This document supplements ARP85, to extend its use in the design of ECS for supersonic transports. The ECS provides an environment controlled within specified operational limits of comfort and safety, for humans, animals, and equipment. These limits include pressure, temperature, humidity, conditioned air velocity, ventilation rate, thermal radiation, wall temperature, audible noise, vibration, and composition (ozone, contaminants, etc.) of the environment. The ECS is comprised of equipment, controls, and indicators that supply and distribute conditioned air to the occupied compartments. This system is defined within the ATA 100 specification, Chapter 21. It interfaces with the pneumatic system (Chapter 36 of ATA 100), at the inlet of the air conditioning system shutoff valves.
Standard

HEAT TRANSFER PROBLEMS ASSOCIATED WITH AEROSPACE VEHICLES

1978-04-01
CURRENT
AIR732
The discipline of heat transfer concerns itself basically with the three modes of transferring thermal energy (convection, conduction, and radiation) and their inter-relations. In any phase of aerospace vehicle design, the importance of any of these basic modes will vary depending upon the natural and induced environment the mission imposes as well as the vehicle configuration.
Standard

ENVIRONMENTAL CONTROL SYSTEMS LIFE CYCLE COST

1985-10-01
HISTORICAL
AIR1812
This report contains background information on life cycle cost elements and key ECS cost factors. Elements of life cycle costs are defined from initial design phases through operational use. Information on how ECS designs affect overall aircraft cost and information on primary factors affecting ECS costs are discussed. Key steps or efforts for comparing ECS designs on the basis of LCC are outlined. Brief descriptions of two computer programs for estimating LCC of total aircraft programs and their use to estimate ECS LCC, are included.
Standard

Environmental Control Systems Life Cycle Cost

2017-02-07
CURRENT
AIR1812B
This report contains background information on life cycle cost elements and key ECS cost factors. Elements of life cycle costs are defined from initial design phases through operational use. Information on how ECS designs affect overall aircraft cost and information on primary factors affecting ECS costs are discussed. Key steps or efforts for comparing ECS designs on the basis of LCC are outlined. Brief descriptions of two computer programs for estimating LCC of total aircraft programs and their use to estimate ECS LCC, are included.
Standard

Environmental Control Systems Life Cycle Cost

2010-01-20
HISTORICAL
AIR1812A
This report contains background information on life cycle cost elements and key ECS cost factors. Elements of life cycle costs are defined from initial design phases through operational use. Information on how ECS designs affect overall aircraft cost and information on primary factors affecting ECS costs are discussed. Key steps or efforts for comparing ECS designs on the basis of LCC are outlined. Brief descriptions of two computer programs for estimating LCC of total aircraft programs and their use to estimate ECS LCC, are included.
Standard

Spacecraft Thermal Balance

2004-09-08
HISTORICAL
AIR1168/12
In the design of spacecraft, heat transfer becomes a criterion of operation to maintain structural and equipment integrity over long periods of time. The spacecraft thermal balance between cold space and solar, planetary, and equipment heat sources is the means by which the desired range of equipment and structural temperatures are obtained. With the total spacecraft balance set, subsystem and component temperatures can be analyzed for their corresponding thermal requirements. This section provides the means by which first-cut approximations of spacecraft surface, structure, and equipment temperatures may be made, using the curves of planetary and solar heat flux in conjunction with the desired coating radiative properties. Once the coating properties have been determined, the material to provide these requirements may be selected from the extensive thermal radiative properties tables and curves.
Standard

Spacecraft Thermal Balance

2011-07-25
CURRENT
AIR1168/12A
In the design of spacecraft, heat transfer becomes a criterion of operation to maintain structural and equipment integrity over long periods of time. The spacecraft thermal balance between cold space and solar, planetary, and equipment heat sources is the means by which the desired range of equipment and structural temperatures are obtained. With the total spacecraft balance set, subsystem and component temperatures can be analyzed for their corresponding thermal requirements. This section provides the means by which first-cut approximations of spacecraft surface, structure, and equipment temperatures may be made, using the curves of planetary and solar heat flux in conjunction with the desired coating radiative properties. Once the coating properties have been determined, the material to provide these requirements may be selected from the extensive thermal radiative properties tables and curves.
Standard

Spacecraft Equipment Environmental Control

2006-03-24
HISTORICAL
AIR1168/13
This part of the manual presents methods for arriving at a solution to the problem of spacecraft inflight equipment environmental control. The temperature aspect of this problem may be defined as the maintenance of a proper balance and integration of the following thermal loads: equipment-generated, personnel-generated, and transmission through external boundary. Achievement of such a thermal energy balance involves the investigation of three specific areas: 1 Establishment of design requirements. 2 Evaluation of properties of materials. 3 Development of analytical approach. The solution to the problem of vehicle and/or equipment pressurization, which is the second half of major environmental control functions, is also treated in this section. Pressurization in this case may be defined as the task associated with the storage and control of a pressurizing fluid, leakage control, and repressurization.
Standard

Spacecraft Equipment Environmental Control

2011-07-25
CURRENT
AIR1168/13A
This part of the manual presents methods for arriving at a solution to the problem of spacecraft inflight equipment environmental control. The temperature aspect of this problem may be defined as the maintenance of a proper balance and integration of the following thermal loads: equipment-generated, personnel-generated, and transmission through external boundary. Achievement of such a thermal energy balance involves the investigation of three specific areas: 1 Establishment of design requirements. 2 Evaluation of properties of materials. 3 Development of analytical approach. The solution to the problem of vehicle and/or equipment pressurization, which is the second half of major environmental control functions, is also treated in this section. Pressurization in this case may be defined as the task associated with the storage and control of a pressurizing fluid, leakage control, and repressurization.
Standard

Aerospace Pressurization System Design

2011-07-25
CURRENT
AIR1168/7A
The pressurization system design considerations presented in this AIR deal with human physiological requirements, characteristics of pressurization air sources, methods of controlling cabin pressure, cabin leakage control, leakage calculation methods, and methods of emergency cabin pressure release.
Standard

Aerospace Pressurization System Design

2004-06-22
HISTORICAL
AIR1168/7
The pressurization system design considerations presented in this AIR deal with human physiological requirements, characteristics of pressurization air sources, methods of controlling cabin pressure, cabin leakage control, leakage calculation methods, and methods of emergency cabin pressure release.
Standard

Aerothermodynamic Test Instrumentation and Measurement

2011-07-25
CURRENT
AIR1168/5A
Like the technologies to which it contributes, the science of instrumentation seems to be expanding to unlimited proportions. In considering instrumentation techniques, primary emphasis was given in this section to the fundamentals of pressure, temperature, and flow measurement. Accent was placed on common measurement methods, such as manometers, thermocouples, and head meters, rather than on difficult and specialized techniques. Icing, humidity, velocity, and other special measurements were touched on briefly. Many of the references cited were survey articles or texts containing excellent bibliographies to assist a more detailed study where required.
Standard

Aerothermodynamic Test Instrumentation and Measurement

2006-03-27
HISTORICAL
AIR1168/5
Like the technologies to which it contributes, the science of instrumentation seems to be expanding to unlimited proportions. In considering instrumentation techniques, primary emphasis was given in this section to the fundamentals of pressure, temperature, and flow measurement. Accent was placed on common measurement methods, such as manometers, thermocouples, and head meters, rather than on difficult and specialized techniques. Icing, humidity, velocity, and other special measurements were touched on briefly. Many of the references cited were survey articles or texts containing excellent bibliographies to assist a more detailed study where required.
Standard

Fault Isolation in Environmental Control Systems of Commercial Transports

2011-06-20
HISTORICAL
AIR1266A
This SAE Aerospace Information Report (AIR) outlines concepts for the design and use of fault isolation equipment that have general application. The specific focus is on fault isolation of environmental control systems (ECS) in commercial transports. Presented are general fault isolation purposes, design principles, and demonstration of compliance criteria. These are followed by three design examples to aid in understanding the design principles. Future trends in built-in-test-equipment (BITE) design are discussed, some of which represent concepts already being implemented on new equipment.
Standard

Fault Isolation in Environmental Control Systems of Commercial Transports

2021-01-12
CURRENT
AIR1266B
This SAE Aerospace Information Report (AIR) outlines concepts for the design and use of fault isolation equipment that have general application. The specific focus is on fault isolation of environmental control systems (ECS) in commercial transports. Presented are general fault isolation purposes, design principles, and demonstration of compliance criteria. These are followed by three design examples to aid in understanding the design principles. Future trends in built-in-test-equipment (BITE) design are discussed, some of which represent concepts already being implemented on new equipment.
Standard

ENVIRONMENTAL CONTROL SYSTEM TRANSIENT ANALYSIS COMPUTER PROGRAM (EASY)

2011-08-10
HISTORICAL
AIR1823
The Environmental Control Analysis SYstem (EASY) computer program is summarized in this report. Development of this computer program initially was sponsored by the U.S. Air Force Flight Dynamics Laboratory. (See References 1, 2, 3, and 4.) It provides techniques for determination of steady state and dynamic (transient) ECS performance, and of control system stability; and for synthesis of optimal ECS control systems. The program is available from the U.S. Air Force, or as a proprietary commercial version. General uses of a transient analysis computer program for ECS design and development, and general features of EASY relative to these uses, are presented. This report summarizes the nine analysis options of EASY, EASY program organization for analyzing ECS, data input to the program and resulting data output, and a discussion of EASY limitations. Appendices provide general definitions for dynamic analysis, and samples of input and output for EASY.
Standard

Environmental Control System Contamination

2020-05-29
CURRENT
AIR1539C
This SAE Aerospace Information Report (AIR) includes a discussion of liquid and particulate contaminants which enter the aircraft through the environmental control system (ECS). Gaseous contaminants such as ozone, fuel vapors, sulphates, etc. are also covered in this AIR. This publication is concerned with contamination sources which interface with ECS and fuel tank inerting systems, and the effects of this contamination on equipment. Methods of control will be limited to the equipment and interfacing ducting which normally falls within the responsibility of the ECS designer.
X